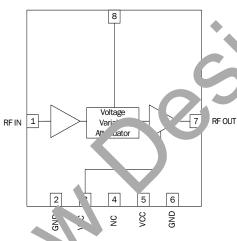


ANALOG CONTROLLED VARIABLE GAIN AMPLIFIER

Package: MCM, 7mm x 7mm



Features

- 2260MHz to 2440MHz Operation
- Gain = 24dB Typical
- Gain Adjustment Range >19dB
- ACPR = -66dBc Typ. at +12dBm P_{OUT} (Dual Carrier WCDMA)
- Small 7mm x 7mm, Multi-Chip Module

Applications

- Cellular, 3G and 4G Infrastructure
- WiBro, WiMax, LTE
- Microwave Radio
- High Linearity Power Control

VCTRL

Fu. ional Block Diagram

Produc Des ription

RFMD's RFv. 201r is a fully integrated analog controlled variable gain arrows. gexceptional linearity over a greater than 19dB gain control rege. This variable gain amplifier is controlled by a single OV to 3.3V positive supply voltage. The RFVA2017 is packaged in a small 7mm x 7mm leadless laminate MCM which contains thermal vias for ultra low thermal resistance. This module is internally matched to 50Ω and is easy to use with no external matching components required.

Ordering Information

RFVA2017SQ Sample bag with 25 pieces
RFVA2017SR 7" Sample reel with 100 pieces
RFVA2017TR7 7" Reel with 1500 pieces
RFVA2017TR13 13" Reel with 2500 pieces

RFVA2017PCK-410 2260MHz to 2440MHz PCBA with 5-piece sample bag

Optimum Technology Matching® Applied

☐ GaAs HBT	☐ SiGe BiCMOS	☑ GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET ✓ InGaP HBT	☐ Si BiCMOS	☐ Si CMOS	☐ BiFET HBT
▼ InGaP HBT	☐ SiGe HBT	☐ Si BJT	☐ LDMOS

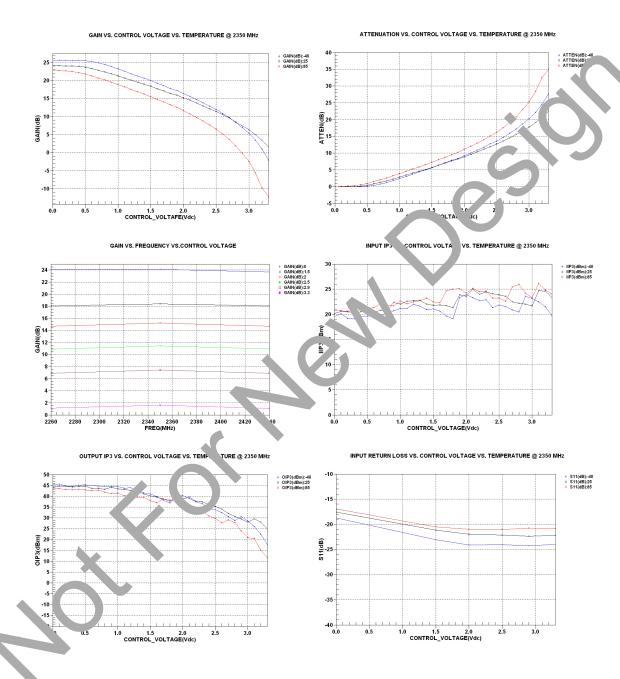
Absolute Maximum Ratings

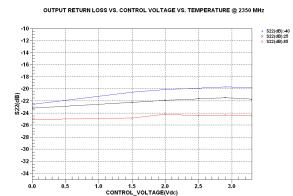
Parameter	Rating	Unit
Max Device Current	770	mA
Max Device Voltage	5.5	V
Max Control Line Voltage	6	V
Max RF Input Power*	25	dBm
Max Junction Temp (T _J)	+150	°C
Max Storage Temp	+150	°C
Thermal Resistance (junction to backside of module)	14.8	°C/W
ESD	Class 1C (1000V min)	
Moisture Sensitivity Level	MSL3	

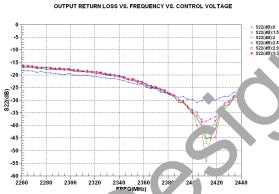
^{*}Load condition: $Z_L = 50\Omega$

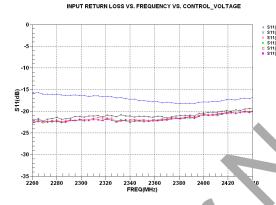
Caution! ESD sensitive device.

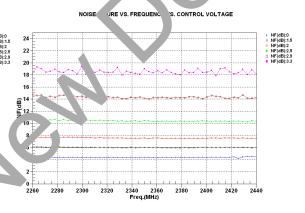
Exceeding any one of a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating continues is not implied.

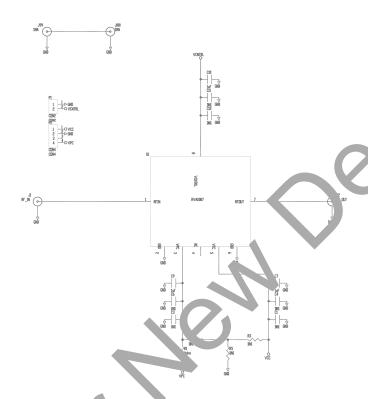

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use infringement of patents, or other rights of third parties, resulting from use. No license is granted by implication or otherwise under any point or pat RFMD. RFMD reserves the right to change component circuitry, recompared to the result of the reserves the right to change component circuitry, recompared to the result of the results of the reserves the right to change component circuitry.


RoHS (Restriction of Hazardous Substances): Compliant , EU Directive 2002/95/EC.


Parameter	Specification		Unit	Condition		
	Min.	Тур.	Max.	Unit	Condition	
Frequency	2260		2440	MHz		
Temperature Range	-40	25	85	00	Operating Range	
Gain	21	24	27	6 3	Min attenuator setting	
Nominal Operating Output Power		12		O.L	Operating power for ACPR rating	
Output IP3	40	44		dBm	In high gain setting	
P1dB	25	29		dBm	In high gain setting	
ACPR	-60	-66		dBc	Dual carrier WCDMA, 7.5dB CF at nominal operating power; over full attenuation range	
Gain Flatness		C	0.4	dB	Over 50MHz BW	
Gain Adjustment Range	19	22		dB		
Control Voltage Range	0		3.3	V		
Noise Figure		4.3	5.3	dB	Min attenuator setting	
Impedance		50		Ω		
Input Return Loss	14	22		dB	Over attenuation range	
Output Return Loss	14	23		dB	Over attenuation range	
Supply Voltage		5.0	5.25	V		
Supply Current	300	460	600	mA	Max current at -40°C	
Supply Current (VPC = 0V)	120	126	140	mA	Output amplifier shutdown total current	



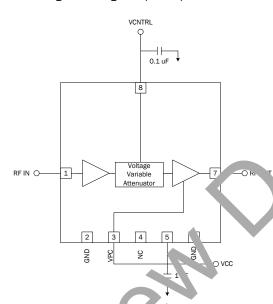




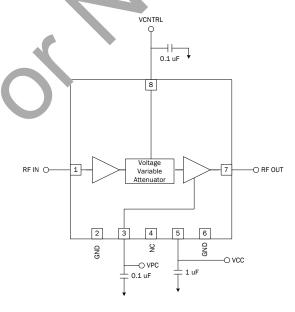
Evaluation Board Schematic

Evaluation Board Bill of Materials (BOM)

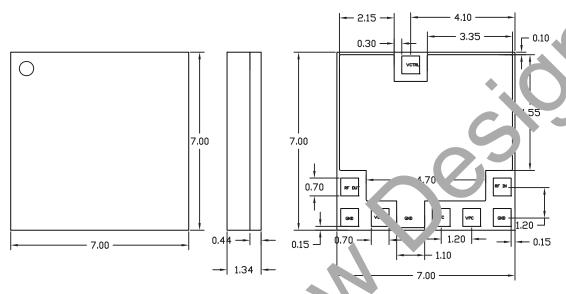
Description	Reference Designator	Manufacturer	Manufacturer's P/N
EVALUATION BOARD		DDI	RFVAx007L410(A)
CAP, 1μF, 10%, 10V, R, C J2	C7, C9-C10	MURATA ELECTRONICS	GRM155R61A105KE15D
RES, 0Ω, 0402	R1	KAMAYA, INC	RMC1/16SJPTH
CONN, SM' END LAUNCH, & 'V, HYB MNT, FLT	J1-J2	HEILIND ELECTRONICS	PER MAT-21-1038
CONN, HDR PLRZD, 4-PIN, 0.100"	P2	ITW PANCON	MPSS100-4-C
CONN, HDR, ST, RZD, 2-PIN, 0.100"	P1	ITW PANCON	MPSS100-2-C
DNF	C1, C3-C4, C6, C11-C12, R3-R5		
REVA. 17 MC ULE	U1	RFMD	RFVA2017


Pin Table and Description

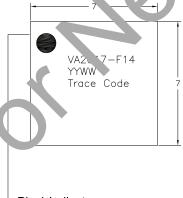
	i iii iabio ana Boodilption			
Pin	Function	Description		
1	RFIN	RF input pin. Internal DC block.		
2	GND	Ground pin.		
3	VPC	Power up/down control for 2nd stage amplifier. Apply V_{CC} to power on 2nd stage amplifier. Apply 0V to dis 'ble 2nd stage amplifier. Do not exceed V_{CC} + 0.5V. Connect to V_{CC} if not needed. Decoupling capacitor may be desired on application board for control line noise.		
4	NC	No connection.		
5	VCC	Power supply for the module. Recommending 1μF decoupling cap on the application board		
6	GND	Ground pin.		
7	RFOUT	RF output pin. Internal DC block.		
8	VCTRL	Gain control voltage; 0V to 3.3V range. Maximum gain at 0V. Recommending 0 μ F de upline the application board.		
Center Pad	GND	Center ground pads need to have a good thermal path on the appliance. Pard. Se sold a stencil pattern shown in the document to define solder paste during assembly		


Application Schematic

(Without using final stage amplifier power down control)


Applicatic Schematic

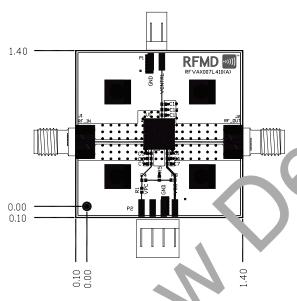
(Using fire stage as plifter power down control)



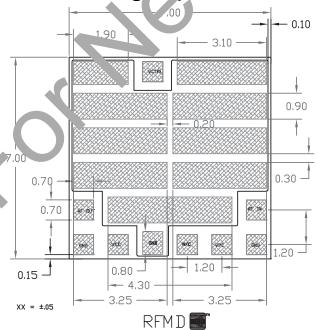
Package Drawing

Branding Ju Fram.

Pin 1 Indicator


Fill in the YYWW Notation with the Date Code YY = Year

WW = Week


Trace Code to be assigned by SubCon

Evaluation Board Assembly Drawing

PCB Design Requirements

